Stroke Prevention and Intervention Update

Hormozd Bozorgchami, MD
Vascular Neurology Fellow
Portland VA Medical Center
Oregon Health & Sciences University
Stroke Prevention and Intervention Update
Hormozd Bozorgchami, MD
Vascular Neurology Fellow
Portland VA Medical Center
Oregon Health & Sciences University

Disclosures

› None
› …But wish I could disclose that I own lots of Apple Stock
Overview

- Introduction
- Stroke Prevention: Optimizing Risk Factors
 - Hypertension
 - Hyperlipidemia
 - Diabetes
 - Antiplatelet Medications
 - Cardioembolic Etiologies
- Stroke Intervention
 - Carotid Stenosis
 - Intracranial Stenosis
 - Acute Stroke Therapies: IV tPA, Stentriever
- Break Time

Classifications

![Stroke Classification Diagram](image)

NINDS Data Bank (1983–1986)
Epidemiology

- Stroke rates in the United States are relatively low compared to other countries
- Currently stroke rate in USA is 42 per 100,000 which is the third lowest in world.
- Worldwide, the median stroke mortality rate is 108 per 100,000 (double the United States)
- 780,000 strokes in USA/year, roughly 180,000/year die
- Total cost of stroke to be approximately $140,000–$200,000 per patient
- The estimated direct & indirect cost of stroke in US is $65.6 Billion

Risk Factor Control: Hypertension

- Hypertension is felt to be the most significant stroke risk factor
 - It is the most prevalent (25–40% of Gen pop)
- Primary Stroke Prevention:
 - British Regional Heart Study
 - SBP 160–180 = RR ~4, compared to SBP <160.
 - SBP >180 = RR ~6

Risk Factor Control: Hypertension

After a Stroke:
- Permissive Hypertension for approximately 1 week

SCAST Trial:
- 2029 patients after stroke (<30 hrs) randomized to receive ARB vs. placebo for 7 days
- ARB group had lower blood pressures during that acute period
- ARB group had worse functional outcome at 6 months, and had high risk for MI, Stroke or Death
- We typically have goal SBP<160 by discharge

Secondary Prevention
- Aggressive Blood Pressure control very important after acute period

Overall treatment effect of anti-hypertensive medications:
- Relative RR: 24%
- Absolute RR 4–5%
- Dose response: More BP control = decreased risk of recurrent stroke
- Goal SBP <140 except in Diabetics, goal SBP <130
Stroke Prevention: Hypertension

› Consider avoiding Beta–Blockers (ACE–I?)

<table>
<thead>
<tr>
<th>Stroke</th>
<th>β blocker n/N</th>
<th>Other drug n/N</th>
<th>RR 95% CI</th>
<th>RR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCOT-BPLA</td>
<td>42296/48</td>
<td>32963/39</td>
<td>1.29 (1.12–1.50)</td>
<td>0.87 (0.68–1.12)</td>
</tr>
<tr>
<td>CONVINCE</td>
<td>138/1357</td>
<td>139/1377</td>
<td>1.58 (1.05–2.36)</td>
<td>1.49 (0.84–2.64)</td>
</tr>
<tr>
<td>ELIAC</td>
<td>4129/3297</td>
<td>4132/3272</td>
<td>0.71 (0.49–1.06)</td>
<td>1.14 (0.87–1.50)</td>
</tr>
<tr>
<td>HAFNAY</td>
<td>2011/3297</td>
<td>17711/367</td>
<td>1.34 (1.13–1.58)</td>
<td>1.33 (1.12–1.60)</td>
</tr>
<tr>
<td>INVEST</td>
<td>5594/508</td>
<td>4754/501</td>
<td>1.22 (0.83–1.79)</td>
<td>1.22 (0.79–1.86)</td>
</tr>
<tr>
<td>LIP (2)</td>
<td>561/1102</td>
<td>491/1031</td>
<td>1.11 (0.76–1.63)</td>
<td>0.90 (0.49–1.75)</td>
</tr>
<tr>
<td>MRC 3</td>
<td>236/2471</td>
<td>195/2481</td>
<td>0.56 (0.21–1.48)</td>
<td>2.28 (1.31–3.95)</td>
</tr>
<tr>
<td>NORDIL</td>
<td>121/238</td>
<td>194/231</td>
<td>1.16 (0.64–2.10)</td>
<td></td>
</tr>
<tr>
<td>STIP-2</td>
<td>4234/481</td>
<td>159/4382</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: χ² = 22.29 (p = 0.02)

Stroke Prevention: Hyperlipidemia

› Elevated total Cholesterol (>240mg/dl) seen in approximately 6–40% of people
› Increases relative risk for stroke 1.8–2.6
› Large study known as “SPARCL”
 ◦ RCT of Atorvastatin 80mg/day vs. placebo
 ◦ Patients had a stroke (or TIA) + LDL >100 and no DM or CAD. N= 4731
 ◦ Saw a 16% RRR; 2.4 ARR in recurrent stroke at 5 years
 * (roughly equivalent benefit to ASA)
Stroke Prevention: Hyperlipidemia

- Unfortunately further analysis showed slight increased risk for ICH
 - Would avoid if amyloid angiopathy demonstrated on MRI or if has previous hemorrhage
- Much debate currently on how to manage statin therapies. Practiced differently in different places
 - Many people give Atorvastatin 80mg to all stroke patients with LDL >100
 - Others treat based on LDL value and with goal of LDL <100 or < 70 in higher risk groups (significant large vessel or intracranial stenosis)

- RR for Stroke 1.5–3.0
- Framingham study found that the increased risk is independent of other co-morbid conditions.
- No study has shown that DM control has not been shown to prevent stroke.
- **ACT NOW Trial**: Prediabetics followed 3 years taking pioglitazone vs. placebo: DM2 seen in 2% vs. 8%
- **Insulin Resistance In Stroke (IRIS) Trial**: Prediabetics randomized to pioglitazone vs. placebo, followed for 5 years
 - Endpoints: Stroke, MI, developing DM2
Antiplatelet Medications for Secondary Stroke Prevention

- **Aspirin 81mg–325mg PO Daily**
 - Not dose dependent
 - 23% RRR versus Placebo
 - Total cost to prevent one stroke: $1,000
- **Clopidogrel (Plavix) 75mg PO Daily**
 - 10% RRR versus ASA in CAPRIE study (but wasn’t statistically significant)
 - CAPRIE did show that it is more effective than ASA in reducing combined risk of stroke, MI or vascular death with similar safety.
- **Aspirin+Dipyridamole (Aggrenox) 25mg/200mg PO BID**
 - Overall 1% per year absolute risk reduction over ASA in ESPRIT
 - Causes headaches in 30% of patients, temporary

- **PROFESS Trial: RCT with 2 x 2 Factorial Design:**
 - Clopidogrel versus ASA+Dipyridamole
 - Each antiplatelet arm: Telmesartan +/-
 - All patients either had TIA or Stroke
 - N = 20,333
 - No significant difference in stroke prevention
 - Strokes in 8.8% pts on clopidogrel versus 9% on ASA+Dipyridamole
 - Slight increase in major bleeding in ASA+Dipyridamole group (3.6% vs. 4.1%)
 - No effect of ARB beyond BP control
 - Cost to prevent one more stroke than ASA:~$100,000*

*PROFESS Study Group, NEJM 2008
Aspirin + Plavix Combo?

- MATCH Trial 2004
 - Plavix+ASA 75mg vs. Plavix+placebo
 - 7,599 Patients (post stroke/TIA) followed 18 mo
 - No significant difference in major vascular events
 - Increased life-threatening bleeding (2.6% vs. 1.3%)

- SPS3 (2012): Subcortical Stroke Patients (lacunar)
 - ASA 325mg+Plavix vs. ASA 325mg+Placebo
 - Stopped prematurely by DSMB due to:
 - Increased risk of bleeding and death in combo group
 - Small probability of benefit (2.1%/yr vs. 2.4%/yr ischemic strokes, Not significant)
Aspirin + Plavix Combo?

- POINT Trial:
 - ASA+Plavix vs. ASA+Placebo within 24 hours of small stroke or TIA
 - 3 months duration of dual therapy
 - Still recruiting

- Based on SAMMPRIS Results, we may also start 3 months of ASA+Plavix for symptomatic intracranial stenosis

Antiplatelet Medications

- Cilostazol 100mg PO BID approved in US for claudication, but has been shown to reduce risk of stroke. Now in guidelines as 4th line medication

- Other alternative antiplatelet medications not studied in stroke
 - Prasugrel: Increased risk of ICH in pivotal trial
 - Ticagrelor: no Increased risk of ICH
Stroke Prevention: Cardioembolic

- Cardioembolic stroke suspected with:
 - Symptoms (chest pain, palpitations, fatigue…)
 - Recent MI
 - Abnormal cardiac history
 - Young age
 - Lapse of consciousness at onset
 - Valsalva then symptoms (suggests PFO)
 - Stroke in multiple vascular territories (often bilateral) on CT or MRI

Stroke Prevention: Cardioembolic

- Diagnosis of atrial fibrillation:
 - Admission EKG: 67–75% of AF
 - Monitor x 48hr (Telemetry or Holter): add’l 4.6%
 - Continuous event recorders for up to 30 days have shown additional screening benefit

- Identification of source of stroke on echo:
 - TTE can’t visualize: valves, aortic appendage, ascending aorta
 - Therefore, sensitivity of TTE in stroke is as little as 25% relative to TEE in some studies
Stroke Prevention: Cardioembolic

- **AF Risk Stratification:**

<table>
<thead>
<tr>
<th>Risk Scheme</th>
<th>Risk stratification</th>
<th>Stroke Risk</th>
<th>Risk Scheme</th>
<th>Stroke Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHADS₂</td>
<td></td>
<td></td>
<td>NICE</td>
<td></td>
</tr>
<tr>
<td>Score 1 point:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CHF (recent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- HTN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Age >75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score 2 points:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Stroke or TIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk 1 point</td>
<td>Low risk</td>
<td>1.9%</td>
<td>Low Risk</td>
<td>1%</td>
</tr>
<tr>
<td>Intermediate Risk 2 points</td>
<td>Intermediate Risk</td>
<td>2.8%</td>
<td>Age<65 with no history of embolism, hypertension, diabetes, or other clinical risk factors</td>
<td>4%</td>
</tr>
<tr>
<td>3 points</td>
<td></td>
<td>4.0%</td>
<td>Age >65 with no high risk factors</td>
<td></td>
</tr>
<tr>
<td>4 points</td>
<td></td>
<td>5.9%</td>
<td>Age <75 with HTN, DM, or vascular disease</td>
<td></td>
</tr>
<tr>
<td>High Risk 5 points</td>
<td>High Risk</td>
<td>8.5%</td>
<td>Previous stroke, TIA, or thromboembolic event</td>
<td>8-12%</td>
</tr>
<tr>
<td>6 points</td>
<td></td>
<td>18.2%</td>
<td>Age >75 with HTN, DM, or vascular disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical evidence of valve disease or heart failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Impaired LV function on echo</td>
<td></td>
</tr>
</tbody>
</table>

- CHADS₂–VASc adds females aged 65–74 as an additional risk factor

Lip GY et al. Chest 2010

Stroke Prevention: Cardioembolic

- **Coumadin for AF:** one of the most successful interventions for stroke prevention
 - Overall risk decreased from 4.5%/year to 1.4%/year
 - RRR 68% (similar for all risk categories) versus aspirin which provides RRR ~20%
 - **Underused:** mainly due to fall risk, perception of increased bleeding risk, and difficulty of achieving therapeutic INR (2–2.5)
 - Fall Risk: One study estimates 295 falls necessary in moderate risk patient to outweigh the benefit of anticoagulation*

*Bond, AJ et al. Thrombosis Journal, 2005
New Anticoagulants

- **Direct Thrombin Inhibitors**
 - RE-LY Trial: Dabigatran 150mg BID
 - More efficacious than warfarin for prevention of systemic embolism.
 - Stroke rate 1.1% vs. 1.7% per year. (n = 18,113 followed for mean 2 years)
 - Equivalent risk of major hemorrhage
 - No bridging necessary. Therapeutic at 2 hours
 - No blood draws necessary
 - Problems: no way to measure effect or compliance, unclear guidelines in reversing in cases of bleeds, needs renal dosing

RE-LY investigators, NEJM 2009

- **Factor Xa Inhibitors:**
 - ROCKET AF trial: Rivaroxaban 20mg PO Daily
 - N = 14,264
 - Showed non-inferiority to warfarin for prevention of stroke or systemic embolism (1.7% vs. 2.2%/year)
 - No difference in major bleeding
 - Problems: no way to measure effect or compliance, unclear guidelines in reversing in cases of bleeds
 - Also data suggests possible increased risk of stroke with cessation

Rocket AF Investigators, NEJM 2011
New Anticoagulants

- Factor Xa Inhibitors: Apixaban 5mg PO BID
 - ARISTOTLE Trial: n = 18,201, mean follow up 1.8yrs
 - Met Endpoint 1.27%/yr in apixaban vs. 1.6%/yr in warfarin
 - Major systemic bleeding 2.13%/yr in apixaban vs. 3.1%/yr in warfarin
 - ICH 0.24%/yr in apixaban vs. 0.47%/yr
 - Death from any cause was 3.52% vs. 3.94%
 - Problems: no way to measure effect or compliance, unclear guidelines in reversing in cases of bleeds

- Still awaiting FDA approval for Afib and DVTs

ARISTOTLE Study Group, NEJM 2011
Carotid Stenosis

- When to treat carotids??
 - Symptomatic vs. Asymptomatic
 - Degree of stenosis qualifying as “severe”

- Best evidence for symptomatic carotid stenosis
 - Carotid Endarterectomy (CEA) vs. Carotid Artery Stenting (CAS)

<table>
<thead>
<tr>
<th>Angio confirmed; % ipsilateral CVA</th>
<th>ASA</th>
<th>CEA</th>
<th>NNT</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>70–99%</td>
<td>24%</td>
<td>7%</td>
<td>8</td>
<td>0.0005</td>
</tr>
<tr>
<td>50–70%</td>
<td>22%</td>
<td>16%</td>
<td>15</td>
<td>0.045</td>
</tr>
</tbody>
</table>

- < 50% CEA not better than ASA
- Major complication rate for CEA 6.7%
- > 50% TX indicated Urgently

Carotid Stenosis: NASCET 1991

- Randomized controlled trial of symptomatic carotid stenosis (n=659): Aspirin vs. CEA
- Cumulative risk of ipsilateral stroke was 26% in the medical patients vs. 9% in the surgical patients

NEJM 325: 445-453
Stroke Intervention: Large Vessel

Early Intervention is more beneficial:

Pooled data from the symptomatic European and American CEA trials

ARR: combined endpoint of 5 yr ipsilateral stroke risk + 30 day operative complications (any stroke + death)

Asymptomatic Carotid Stenosis

ACAS: 1662 pts with asymptomatic carotid stenosis of 60% or greater enrolled

CEA versus Aspirin

Risk over 5 years for stroke or death was 5% in CEA group versus 10% in medical treatment

Only “1% year difference” vs. “surgery twice as good”

Caveat: This study was done when other stroke risk factors weren’t addressed
Asymptomatic Carotid Stenosis

- Tend to treat medically in older patients
- Consider CEA/CAS in younger patients with >70% stenosis

- Will be starting new study “CREST 2”
 - Aggressive Medical Management versus Procedure

Carotid Artery Stenting

[Diagram of carotid artery stenting]
Carotid Artery Stenting

- At least 13 randomized trials: CEA vs. CAS
- Each with its limitations

<table>
<thead>
<tr>
<th>Trial</th>
<th>No. of patients</th>
<th>Cerebral protective devices, %</th>
<th>Mean age (year)</th>
<th>% asymptomatic</th>
<th>Degree of stenosis, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naylor, 1998^1</td>
<td>23</td>
<td>0</td>
<td>67.2</td>
<td>0</td>
<td>>70</td>
</tr>
<tr>
<td>Alberts, 2001^4</td>
<td>219</td>
<td>0</td>
<td>68.3</td>
<td>0</td>
<td>>60</td>
</tr>
<tr>
<td>Brooks, 2001^5</td>
<td>104</td>
<td>0</td>
<td>68.0</td>
<td>0</td>
<td>>70</td>
</tr>
<tr>
<td>CAVATAS, 2001^3</td>
<td>504</td>
<td>0</td>
<td>67.0</td>
<td>3</td>
<td>NR</td>
</tr>
<tr>
<td>Brooks, 2004^6</td>
<td>85</td>
<td>0</td>
<td>68.2</td>
<td>100</td>
<td>>80</td>
</tr>
<tr>
<td>Yadav, 2004^7</td>
<td>334</td>
<td>96</td>
<td>72.6</td>
<td>71</td>
<td>>50; >80</td>
</tr>
<tr>
<td>Mas, 2004^9</td>
<td>527</td>
<td>92</td>
<td>69.7</td>
<td>0</td>
<td>>60</td>
</tr>
<tr>
<td>The SPACE Group, 2006^28</td>
<td>1200</td>
<td>NR (mixed)</td>
<td>67.9</td>
<td>0</td>
<td>>70</td>
</tr>
<tr>
<td>Ling, 2000^18</td>
<td>166</td>
<td>100</td>
<td>63</td>
<td>Mixed, % unclear</td>
<td>>50; >70</td>
</tr>
<tr>
<td>Hofmam, 2006^17</td>
<td>20</td>
<td>NR</td>
<td>69</td>
<td>0</td>
<td>>70</td>
</tr>
<tr>
<td>Steinbauer et al^12</td>
<td>87</td>
<td>0</td>
<td>69</td>
<td>47</td>
<td>>50 (angio)</td>
</tr>
<tr>
<td>CREST, 2010^9</td>
<td>2502</td>
<td>96</td>
<td>69</td>
<td>>70 (US)</td>
<td>>70 (CTA/MRI)</td>
</tr>
<tr>
<td>ICSS, 2010^7</td>
<td>1713</td>
<td>72</td>
<td>70</td>
<td>0</td>
<td>>50</td>
</tr>
</tbody>
</table>

Angiography; CTA, computed tomography angiography; MRA, magnetic resonance imaging; NR, not reported; US, ultrasound.
All angioplasties were performed with stenting except in Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS, only 26%).
Stenosis in symptomatic patients was >50% and in asymptomatic patients was >80%.
Stenosis in symptomatic patients was >50% and in asymptomatic patients was >70%.

Carotid Revascularization Endarterectomy vs. Stenting Trial (CREST)

- Prospective, multicenter RCT comparing CEA and CAS in participants with symptomatic and asymptomatic stenosis
 - n = 2502 patients
 - Endpoints: MI, Stroke, or Death
 - Eligibility criteria
 - **Symptomatic**: Stenosis >50% on angiography, or >70% on Carotid Doppler. If US was 50–69%, then need CTA/MRA >70%
 - **Asymptomatic**: Stenosis >60% on angiography, or >70% on Carotid Doppler. If US was 50–69%, need 80% on CTA/MRA

CREST NEJM 2010
CREST Results

- **Primary Endpoint <4 years** (Stroke, MI, Death)
 - 7.2% in CAS vs. 6.8% in CEA, \(P=0.51 \) (NS)

- **Ipsilateral Stroke after Periprocedural Period**
 - 2.0% in CAS vs. 2.4% CEA, \(P=0.85 \) (NS)

- When looking at symptomatic patients periprocedurally:
 - Patients with CEA had slightly higher rate of MI \((2.3\% \text{ vs. } 1\%) \)
 - Patients with CAS had slightly higher rate of CVA \((5.5\% \text{ vs. } 3.2\%) \)

- Minor stroke 4% CAS vs. 2% CEA
- Overall, no difference major strokes (1.9% in CAS vs. 3% in CEA [NS]) and they occur early
- No difference in restenosis rates (>70%) at 2 years
- Angio predictors of CAS strokes: distal tortuosity, sequential lesions, length > 20mm
CREST Results

- Subgroup analysis suggests stenting favored in younger patients while endarterectomy favored in older patients.

![Graph showing hazard ratio for primary end point with CAS](CREST NEJM 2010)

CREST Conclusions

- At experienced centers both CEA and CAS appear to have low perioperative complications and excellent longer-term results.
- Both CEA and CAS appear to be useful tools for preventing stroke.
- 1/26/11 FDA approved Acculink/CAS for low risk patients to prevent stroke: 50% stenosis in symptomatic & 60% in asymptomatic.
Intracranial Stenosis

- **SAMMPRIS Trial**
 - Intracranial Stenting vs. Aggressive Medical Management
 - Med Tx. = SBP <140, LDL <70, ASA/Plavix x 3 mo
 - Stopped after 451 patients enrolled by DSMB
 - 30 Day stroke/Death: 14% in stented group versus 6% in Medical group (P <0.002)
 - 30% of strokes in stent group were ICH
 - Long term follow up in progress

SAMMPRIS NEJM 2011
Intracranial Stenosis

- Looked at patients who failed antithrombotic therapy at time of enrollment
 - 63% of all SAMMPRIS patients had their qualifying event on antithrombotic therapy
 - Most of these were on antiplatelet (95%)
 - Of these patients who were randomized: 12.1% of patients on med therapy had events vs. 21.5% in stented group
 - Conclusion: Similar results even if failed antithrombotic before enrolling in trial
- Will still consider stenting in select cases
IV Thrombolysis (IV tPA)

- NINDS tPA Study, NEJM 1995
 - IV tPA within 3 hours of symptom onset
 - Dose: 0.9mg/kg (max dose 90mg) 10% given over 1–2min with remaining dose infused over 1 hr.
 - Ages 18–79, BP <185/110
 - CT Head without e/o Hemorrhage

![Modified Rankin Scale](https://example.com/modrankinscale.png)

- Improved the odds of a good outcome (complete recovery or minimal deficit but able to fully resume all prior activities) from 25% to 45% at 3 months.
- Risk of ICH ~6%, with severe results in 3%
- Overall, IV tPA does not change risk for death after stroke
Intra-Arterial Thrombolysis

- PROACT II, JAMA Dec 1999
 - 6 Hour Window: Angio confirmed MCA Occlusion
 - N = 180
 - IA ProUrokinase 9mg over 2 hours

PROACT II Results

<table>
<thead>
<tr>
<th></th>
<th>ProUrokinase</th>
<th>Placebo</th>
<th>P–Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRS 0, 1, 2</td>
<td>40%</td>
<td>25%</td>
<td><0.05</td>
</tr>
<tr>
<td>SICH</td>
<td>10.2%</td>
<td>1.8%</td>
<td><0.01</td>
</tr>
<tr>
<td>Death</td>
<td>24%</td>
<td>27%</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Mechanical Clot Retrieval

- The MERCI Device (Concentric)

The MERCI Trial

- Prospective, open-label trial
- Can use on vertebral artery, basilar artery, ICA, MCA (M1 & M2) within 8 hours
- 27% with 90-day MRS <= 2
 - 46% in recanalized group vs. 10% in failed recanalization group
- Revascularization significantly associated with good outcome
- Became FDA approved to recanalize vessels
The Penumbra System

Penumbra Trial Results N=125

<table>
<thead>
<tr>
<th></th>
<th>% Recanalized</th>
<th>ICH</th>
<th>mRS 2 or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18%</td>
<td>2%</td>
<td>25%</td>
</tr>
<tr>
<td>Penumbra</td>
<td>82%</td>
<td>11%*</td>
<td>23%</td>
</tr>
</tbody>
</table>

* 29% (4/14) were Subarachnoid Hemorrhages
Stentreivers: The Next Generation
Solitaire Device (EV3)

- SWIFT Trial: Randomized between Solitaire vs. MERCI within 8 hours of onset (N=113)
 - Overall successful recanalization without ICH seen in 60% in Solitaire versus 24% in MERCI (P < 0.0001)
 - Good outcome (mRS 0–2) seen in 58% vs. 38% (P=0.017)
 - 90-Day Mortality 17% vs. 38% (P=0.02)
 - ICH seen in 2% vs. 11% (P=0.05)

Solitaire Device (EV3)

- FDA approved March 3, 2012
Future Devices

- Concentric: TREVO Device (Completed Enrollment)
- Reverse Medical: RESTORE (Currently Enrolling)
- Codman: ReVive (Will Enroll Soon)

Stroke Prevention Summary

- **Work-up:**
 - Fasting lipids, fasting glucose, HgbA1C
 - Imaging of vessels from arch to brain
 - EKG, consider Holter or event monitor to eval AFib
 - Echocardiogram, consider TEE

- **Treatment:**
 - Antiplatelet for non-cardioembolic
 - Anticoagulation for AF and mechanical valves
 - Antihypertensive:
 - Permissive HTN (1 week)
 - (SBP<120 in most patients, but at least SBP<140)
 - Hyperlipidemia
 - Goal LDL <100 in most patients, Goal <70 in intracranial stenosis, significant large vessel stenosis or high-risk patients
Stroke Prevention Summary

- Large vessel Stenosis
 - Symptomatic Carotid Stenosis >50%: Early CEA/CAS
 - Asymptomatic Carotid Stenosis >~70%: Consider CEA/CAS

- Intracranial Stenosis:
 - Vast majority: dual antiplatelet (ASA+Plavix x 3 months), LDL<70, SBP<140 unless has DM2 then SBP<130
 - If continues to fail maximum medical therapy or disabling orthostatic symptoms: consider angioplasty and/or stenting

Acute Stroke Therapy Summary

- IV tPA
 - Effective when given within 3 hours of last normal
 - Can be used within 4.5 hours in select groups
 - Need labs, CT Head, EKG
 - Review exclusion criteria

- Intra-Arterial Therapies (tPA & Mechanical)
 - Can benefit from treatment after 3 hours
 - Highly specialized therapies often requiring transfers
 - Can be very effective in the appropriate population
Oregon Stroke Center

Wayne M. Clark, MD
Helmi L. Lutsep, MD
Hormozd Bozorgchami, MD
Ted Lowenkopf, MD
Lisa Yanase, MD
Jeremy Fields, MD
Erek Helseth, MD
John Zurasky, MD
Stanley Barnwell, MD PhD
Gary Nesbit, MD
Bryan Petersen, MD
Aclan Dogan, MD
Karen Ellmers, RN
Darren Larsen, RN
Monica Dolan, RN
Barbara Dugan, RN
Sarah Ross, RC
Jon Foley, RC
Kelly Feest, RC

Thank You

Remember “Time is Brain”

OREGON STROKE CENTER
STROKE CODE: PAGE 12600
STROKE HOT LINE: 503–494–7000