Medications in the treatment of Parkinson's disease

Ed Farag MD
Assistant Professor of Neurology
Movement Disorders Program,
UCLA Geffen School of Medicine
WLA VA Medical Center

Idiopathic Parkinson's Disease

- 2nd most common neurodegenerative disorder
 - lifetime risk: 1 in 40
- Age of onset
 - Common after 60 y/o
 - Young onset (20-50 y/o)
- Men get it more often than women

Parkinson's Disease Genes

Name and Locus	Gene Mode o	f Inheritance; P	athological Features	Protein Function
PARK1 4q21-q22 PARK2 6q25.2-q27 PARK3 2p13	α-synuclein Parkin Unknown	AD AR (AD?) AD	Lewy bodies no Lewy bodies Lewy bodies	synaptic vesicle trafficking Ubiquitin E3 ligase,
PARK4 4q21	triplication α -syn	AD	Lewy bodies	
PARK5 4p14	UCH L1	AD	?	Removes polyubiquitin
PARK6 1p35-p36	PINK1	AR	?	PTEN-induced kinase 1 (mito localized, protects UPS inhib)
PARK7 1p36	DJ-1	AR	?	Sumoylation pathway
PARK8 12q12	LRRK2 reduc	AD sed penetrance	Lewy bodies	Kinase. GTPase
PARK9 1p36	ATP13A2	AR	?	Lysosomal ATPase
PARK10 1p32	Unknown	? Dominant		
PARK11 2q34	Unknown	AD reduced p	en ?	
PARK12 Zq21	Unknown	X-linked	?	
PARK13 2p12	HTRA2	?Dominant	?	?Mitochondrial protein

Treatment of Parkinson's Disease

- Nonpharmacologic
 - Education
 - Exercise
- Medications
 - Neuroprotective
 - Symptomatic
- Surgical
 - DBS, transplantation

NARROWING THERAPEUTIC WINDOW WITH TIME

Motor Fluctuations and Age

Adapted from: Kumar N et al. Movement Disorders 20(3); 2005, p342-344

Proposed Etiology of Motor Fluctuations

- Advanced disease (loss of DA neurons)
- •Pulsatile stimulation of dopamine receptors is necessary for the development of motor fluctuations
 - •Supported by experiments in rats and primates
 - •Supported by short-term human experiments
 - •No long-term human data

Initiation of Treatment

- General Considerations
 - Age
 - Young onset
 - motor fluctuations
 - neuroprotection
 - Older patients
 - cognitive issues
 - comorbidities
 - Disability
 - Cost/Compliance

Considerations in Choosing a Medical Regimen

- Side-effects of all dopaminergic agents include:
 - Nausea
 - Dyskinesias
 - Psychosis (especially in elderly)
 - Orthostatic hypotension
 - Compulsions?
- Relative benefits of agonists are often outweighed by SE in elderly

PD Medications

- Anticholinergic
- DopaminergicPrecursor supplementCOMT inhibitionMAOB inhibition

Receptor agonists

Other

- TrihexyphenidylBenztropine
- Levodopa
- Entacapone
- SelegilineRasagiline
- PramipexoleRopiniroleapomorphine

Amantadine

DRUGS FOR PARKINSON'S DISEASE

Dopamine Agonists

- In early PD
 - Delays need for L-dopa
 - Low incidence of dyskinesia as monotherapy
 - Not metabolized or effected by protein intake
 - Neuroprotection ?
 - Higher incidence of cognitive side-effects in the elderly and cognitively impaired

5 Yr Ropinirole vs. Levodopa

- 268 Subjects randomized to ropinirole or levodopa
- Open label supplementation allowed
- HR of remaining dyskinesia free 2.82
- 5 yr dyskinesia: levo-45%; agonist-20%

β-CIT indicates 2β-carboxymethoxy-3β(4-iodophenyl)tropane. Single-photon emission computed tomography (SPECT) [123]β-CIT images of progressive striatal dopamine transporter loss during the 46-month evaluation period for a representative patient. Loss of activity is more marked in the putamen than in the caudate. Levels of SPECT activity are color-encoded from low (black) to high (yellow/white).

- 82 PD patients at 17 sites in US and Canada enrolled between 1996 and 1997
- Randomized to pramipexole .5mg tid or levodopa 25/100 tid
- Open label levodopa could be added after 10 week escalation phase
- 46 month f/u

Parkinson Study Group. CALM-PD; JAMA, April 3, 2002 (287): 13

Figure 3. Change From Baseline in β-CIT Uptake

- Mean percent loss in striatal Beta Cit uptake was reduced in agonist group: 7.1% vs 13.5% at 22 mos; 16% vs 25.5% at 46 mos (P-.01)
- Beta Cit decline correlated with change in UPDRS (r=-.4; P=.001)

How do agonists fare after the first 4-5 years?

CALM-PD Long Term Data

Mean 6 year follow-up

■ 158 of the 183 who completed the CALM-PD trial and 64 of the 118 who had withdrawn prematurely from the CALM-PD trial were enrolled in the CALM cohort study.

Subject Outcomes at the Final Visit

Table 3. Subject Outcomes at the Final Visit^a

Outcome	Initial Pramipexole Treatment (n=108)	Initial Levodopa Treatment (n=114)	Treatment Effect (95% CI)	<i>P</i> Value
Self-reported disability by S/E ADL Scale score, mean (SD)				
Direct method	79.8 (15.4)	81.8 (14.9)	2.0 (-2.1 to 6.1)	.34
Indirect method	79.9 (16.2)	82.5 (14.6)	2.8 (-1.4 to 7.0)	.19
"On" state	82.8 (14.9)	84.8 (13.6)	2.4 (-1.5 to 6.2)	.23
"Off" state	65.8 (21.5)	72.0 (17.8)	5.7 (-1.0 to 12.4)	.09
Dopaminergic complications	, ,	, ,	,	
Any, No. (%) ^b	54 (50.0)	78 (68.4)	2.48 (1.39 to 4.44)	.002
Dyskinesias, No. (%)	22 (20.4)	42 (36.8)	2.56 (1.35 to 4.84)	.004
Wearing off, No. (%)	48 (44.4)	67 (58.8)	2.11 (1.19 to 3.71)	.01
Freezing, No. (%)	35 (34.7)	28 (26.2)	0.72 (0.39 to 1.35)	.30
Lang-Fahn ADL dyskinesia scale score, mean (SD)	1.1 (2.9)	1.3 (3.2)	0.7 (0.0 to 1.5)	.06
% of waking day in "on" state, mean (SD)	85.6 (21.2)	83.9 (17.8)	-3.2 (-8.4 to 2.1)	.24
UPDRS score change from baseline visit, mean (SD)	, , ,	,	, ,	
Total	2.4 (17.4)	0.5 (17.1)	-3.8 (-8.3 to 0.8)	.11
Mental	0.9 (2.1)	1.1 (2.1)	0.0 (-0.6 to 0.6)	.95
ADL	1.0 (6.2)	0.9 (5.2)	-1.3 (-2.7 to 0.1)	.07
Motor	1.0 (12.2)	-1.2 (12.9)	-2.7 (-5.9 to 0.6)	.10
Nonmotor outcomes	,	, , ,	,	
MMSE score change from baseline visit, mean (SD)	-1.1 (4.0)	-1.3 (3.9)	0.2 (-0.9 to 1.3)	.77
ESS score, mean (SD)	11.3 (5.8)	8.6 (4.7)	-2.5 (-4.0 to -1.1)	<.001
ESS score ≥10, No. (%)	58 (57.4)	38 (35.2)	0.39 (0.22 to 0.70)	.002
Geriatric Depression Scale score, mean (SD)	3.3 (3.2)	3.1 (3.4)	-0.1 (-1.0 to 0.9)	.89
Edema, No. (%)	29 (27.1)	16 (14.4)	0.48 (0.24 to 0.98)	.04
Edema that interferes with function, No. (%)	5 (4.6)	5 (4.4)	0.93 (0.25 to 3.47)	.92
Quality of life		, , ,	,	
PDQUALIF total score change from baseline visit, mean (SD)	7.1 (12.0)	8.6 (10.5)	-0.2 (-3.3 to 2.9)	.90
EuroQol VAS score change from baseline visit, mean (SD)	-4.5 (17.7)	-5.6 (16.1)	-0.7 (-5.2 to 3.8)	.76
EQ-5D score change from baseline visit, mean (SD)	-0.08 (0.25)	-0.07 (0.22)	0.04 (-0.02 to 0.11)	.15
SF-12 physical component summary score, mean (SD)	37.4 (9.7)	38.7 (9.2)	-0.2 (-2.8 to 2.4)	.90
SF-12 mental component summary score, mean (SD)	43.2 (8.5)	42.2 (9.9)	-1.9 (-4.5 to 0.8)	.17

Abbreviations: ADL, activities of daily living; Cl, confidence interval; ESS, Epworth Sleepiness Scale; MMSE, Mini-Mental State Examination; PDQUALIF, Parkinson Disease Quality-of-Life Scale; S/E, Schwab and England; SF-12, 12-Item Short Form Health Survey; UPDRS, Unified Parkinson's Disease Rating Scale; VAS, visual analog scale.

bIncludes wearing off, on-off effects, or dyskinesias.

^a For continuous outcomes, the treatment effect is expressed as the group difference in adjusted mean response (levodopa minus pramipexole) derived from an analysis of covariance model; for dichotomous outcomes, the treatment effect is expressed as the adjusted odds ratio (levodopa to pramipexole) derived from a logistic regression model. See text for details.

- Review of Rochester Epidemiology Project medical records linkage system
- All incident PD patients treated with levodopa in Olmstead county 1976-1990
- 126 patients
- Based on KM analysis, estimated dyskinesia rate: 30% at 5 treatment years, 59% by 10 years
- Bothersome dyskinesia: 17% at 5 yrs, 43% at 10 yrs
- Troublesome dyskinesia 12% at 10 yrs
- Univariate analysis: older age by 10 yrs decreased risk: HR .72

Van Gerpen, J. A. et al. Arch Neurol 2006;63:205-209.

Prevalence of motor complications at 10 years

Table 2 Prevalence of mo	le 2 Prevalence of motor complications at final follow-up			
Prevalence at final follow-up	L-dopa arm (n = 42)	Bromocriptine arm (n = 63)	Difference* (95% CI)	p Value
Any dyskinesia	58%	56%	-5.3% (-25%, 15%)	0.61
Moderate/severe dyskinesia	39%	35%	-6.0% (-25%, 13%)	0.51
Any fluctuations	50%	56%	5.1% (-15%, 25%)	0.61
Moderate/severe fluctuations	33%	35%	0.01% (-19%, 19%)	0.94

^{*}Adjusted for baseline characteristics (age, duration of disease, baseline Hoehn & Yahr, Northwestern University Disability, and Webster ratings).

- PDRG-UK trial comparing levodopa, I-dopa + selegiline, and bromocriptine
- 782 subjects 1985-1990 randomized; 166 available at final assessment (21%)
- Mean duration follow-up at final assessment 14 yrs
- Disability scores were better in l-dopa arm after adjustment for baseline characteristics (p=.03)
- No difference in mortality rates, prevalence of dyskinesia, and dementia

Dopamine Agonists: Distinguishing Features

- Directly stimulate dopamine receptors
- No metabolic conversion; bypasses nigrostriatal neurons
- No absorption delay from competition with dietary amino acids
- Longer half-life than levodopa
- Monotherapy or adjunct therapy
- May delay or reduce motor fluctuations & dyskinesias associated with levodopa
- May be neuroprotective

DAs: Common Adverse Effects

- Nausea, vomiting
- Dizziness, postural hypotension
- Headache
- Dizziness
- Drowsiness & somnolence
- Dyskinesias
- Confusion, hallucinations, paranoia
- ???ICDs

Selegiline

- Irreversible MAO-B inhibitor
- Clinically active by inhibiting dopamine metabolism in brain
- May be neuroprotective
- Dosage: 5 mg at breakfast and lunch
- Side effects: insomnia, hallucinations, nausea (rarely),OH
- Potential interactions with tricyclics and SSRI antidepressants

Rasagiline: The TEMPO Trial

Siderowf, A. et al. Neurology 2006;66:S80-S88

Rasagilinethe ADAGIO trial

Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E; ADAGIO Study Investigators.

N Engl J Med. 2009 Sep 24;361(13):1268-78.

Rasagiline

End Point	Estimated No. of Points	Confidence Interval†	P Value
First primary (estimated rate of change in UPDRS score/wk, wk 12–36)			
Placebo	0.14±0.01		
Rasagiline			
1 mg/day	0.09±0.02		
2 mg/day	0.07±0.02		
1 mg/day vs. placebo	-0.05±0.02	-0.08 to -0.01	0.01
2 mg/day vs. placebo	-0.07±0.02	-0.11 to -0.04	< 0.00
Second primary (estimated change in total UPDRS score from baseline to wk 72)			
Rasagiline			
1 mg/day, early start	2.82±0.53		
1 mg/day, delayed start	4.50±0.56		
2 mg/day, early start	3.47±0.50		
2 mg/day, delayed start	3.11±0.50		
1 mg/day, early start vs. delayed start	-1.68 ± 0.75	−3.15 to −0.21	0.02
2 mg/day, early start vs. delayed start	0.36±0.68	-0.99 to 1.70	0.60
Third primary (estimated rate of change in UPDRS score/wk, wk 48–72)			
Rasagiline			
1 mg/day, early start	0.085±0.02		
1 mg/day, delayed start	0.085±0.02		
2 mg/day, early start	0.094±0.01		
2 mg/day, delayed start	0.065±0.02		
1 mg/day, early start vs. delayed start	0.00±0.02	−0.04 to 0.04‡	<0.00
2 mg/day, early start vs. delayed start	0.03±0.02	−0.01 to 0.06‡	<0.00
Secondary (change in total UPDRS score from baseline to final visit in phase 1)			
Placebo	4.27±0.26		
Rasagiline			
1 mg/day	1.26±0.36		
2 mg/day	1.11±0.36		
1 mg/day vs. placebo	-3.01±0.43	−3.86 to −2.15	<0.00
2 mg/day vs. placebo	-3.15±0.43	-4.00 to -2.31	< 0.00

Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E; ADAGIO Study Investigators.

N Engl J Med. 2009 Sep 24;361(13):1268-78.

Rasagiline

The Adagio Trial

Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E; ADAGIO Study Investigators.

N Engl J Med. 2009 Sep 24;361(13):1268-78.

Levodopa

- Most effective drug for parkinsonian symptoms
- First developed in the late 1960s; rapidly became the drug of choice for PD
- Large neutral amino acid; requires active transport across the gut-blood and blood-brain barriers
- Rapid peripheral decarboxylation to dopamine without a decarboxylase inhibitor (DCIs: carbidopa, benserazide)
- Side effects: nausea, postural hypotension, dyskinesias, motor fluctuations

Sinemet

- L-dopa
 - Most effective Rx for majority of Sx
 - Pulsatile use likely leads to motor fluctuations
 - Carbidopa >75 mg/day

Diagram of LD Metabolism

Is Levodopa Toxic?

- Early patients develop motor fluctuations, but may be a function of neuronal cell loss
- Increased life expectancy with LD introduction
- LD-naive advanced PD patients develop fluctuations almost immediately with LD induction
- No LD neuronal dropout in laboratory animals
- Some believe continuous infusion may be safer than pulsatile therapy

Levodopa Toxicity: The ELLDOPA Trial

Fahn S and The Parkinson's Study Group N Engl J Med 351;24 December 9 2004

Levodopa-Induced Dyskinesias

- Manifestation of excessive dopaminergic stimulation
- Typically late effect, and with higher doses
- Narrowing of therapeutic window
- Rare in LD-naive patients on DA monotherapy
- Most common is "peak dose" dyskinesia
 - disappears with dose reduction
- Choreiform, ballistic and dystonic movements
- Most patients prefer some dyskinesias over the alternative of akinesia and rigidity

Levodopa/Carbidopa Formulations

	Onset	Duration
Immediate Release 10/100, 25/100, 25/250	20-40 min	2-4 hr
Controlled Release 25/100, 50/200	30-60 min	3-6 hr
ODT	dissolves on contact with saliva but no transmucosal absorption	

Pulsatile vs. Tonic DA Receptor Stimulation

Principles of Managing Fluctuations

- Decrease fluctuations of L-dopa blood levels
 - Use smaller more frequent dosing.
 - Use combination of regular Sinemet and Sinemet CR.
 - Add COMT inhibitor
 - Add MAO-B inhibitor
- Add amantadine
- Surgery

COMT Inhibition

- Increases the half-life of L-dopa plasma concentrations without affecting peak values thus reducing fluctuations in L-dopa concentrations
- Decreases concentration of O-methyldopa which may reduce competition for the NAA transporter.

COMT Inhibition

Levodopa/DDC Inhibitor

EFFECT OF COMT-I ON PLASMA L-DOPA LEVELS

COMT Inhibitors

- Newest class of antiparkinsonian drugs: tolcapone (use best restricted to PD specialist), entacapone
- MOA similar to dopa decarboxylase inhibitors
- Potentiate LD: prevent peripheral degradation by inhibiting catechol O-methyl transferase
- Reduces LD dose necessary for a given clinical effect
- Helpful for both early and fluctuating Parkinson's disease
- May be particularly useful for patients with "brittle" PD, who fluctuate between off and on states frequently throughout the day

Entacapone

- Dosage: 200 mg w/each levodopa dose
- Parkinson's Study Group 1997: Increased on time by 5%, more in pts w/least on time
- Rinne et al., 1998: Increased on time by ~10%; decreased levodopa
- Diarrhea, dopaminergic SEs

Amantadine

- Antiviral agent; PD benefit found accidentally
- Tremor, bradykinesia, rigidity & dyskinesias
- Exact mechanism unknown; possibly:
 - enhancing release of stored dopamine
 - inhibiting presynaptic reuptake of catecholamines
 - dopamine receptor agonism
 - NMDA receptor blockade
- Side effects —autonomic, psychiatric
- 200-300 mg/day

Anticholinergics

- Dopaminergic depletion→cholinergic overactivity
- Initially used in the 1950s
- Effective mainly for tremor and rigidity
- Common agents (Start low, go slow):
 - Trihexyphenidyl: 2-15 mg/day
 - Benztropine: 1-8 mg/day
 - Ethopropazine: 10-200 mg/day
- Side effects:
 - Dry mouth, sedation, delirium, confusion, hallucinations, constipation, urinary retention

Apomorphine

- D1/D2 agonist
- Parenteral delivery (s.c., i.v., sublingual, intranasal, rectal)
- Rapid "off" period rescue
 - 2-5 mg s.c.; pen injection systems
- Treatment of unpredictable, frequent motor fluctuations
 - continuous s.c. infusion via mini-pump
- SE: nausea, vomiting, hypotension
 - trimethobenzamide 250 mg t.i.d.
 - domperidone 20 mg t.i.d.; not available in U.S.

Considerations in Choosing a Medical Regimen

- Sinemet is the most effective medication
- L-Dopa probably doesn't kill cells and works for more than 5 yrs.
- L-Dopa primes system for motor fluctuations (pulsatile vs tonic use)
- Agonists delay onset of motor fluctuations
- All PD medications have more side-effects in elderly

Co-Enzyme Q10

16 Month Study

- •Complex I deficiency in PD
- •Co-Q10 is a cofactor for Complex I
- •Co-Q10 restores activity in vitro

Shults et al. 2002

Considerations in Choosing a Medical Regimen

- Potency
- Side-effects
 - Nausea
 - Psychosis (especially in elderly)
 - Orthostatic hypotension
 - Peripheral edema
 - Compulsions?
- Relative benefits of agonists are often outweighed by SE in elderly

Problems in Advanced Parkinson's Disease

- Motor fluctuations (young onset > older).
- Falls
- Medication-induced psychosis
- Depression
- Sleep
- Cognitive decline

Initiating Therapy

Disabled

Yes

- -MAO-BI
- -agonist (young)
- -Sinemet

- -educate
- -exercise
- -MAO-BI?
- -agonist?

AE Risk?