Do Pesticides Cause PD?

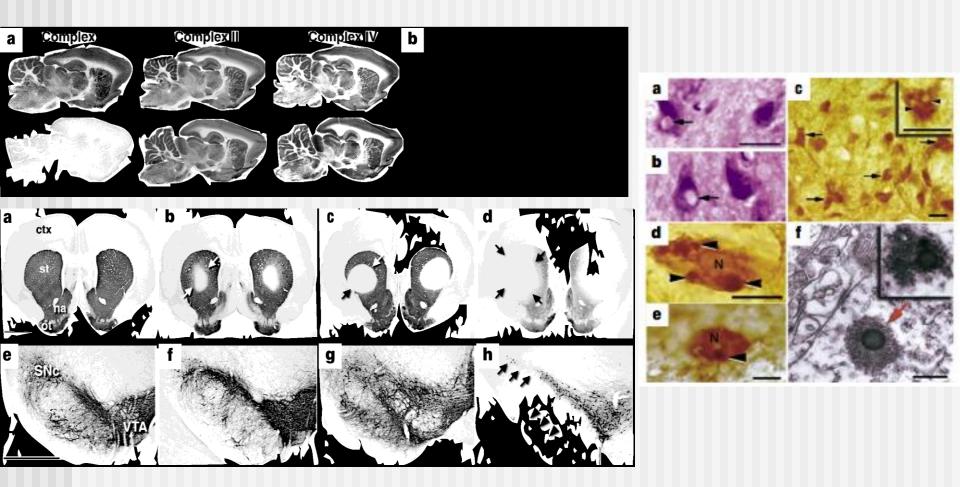
Jeff Bronstein MD, PhD Director SW PADRECC and UCLA Movement Disorders How can we prove that a toxin contributes to the pathogenesis of PD?

- A plausible mechanism of action.
- Association between a toxin and PD in epidemiological studies.
- Recapitulation of behavioral and pathological features in cellular and animal models.

Mitochondrial Dysfunction and PD

- MPTP is a complex I inhibitor
- Decreased complex I and II in brains and peripheral platelets in PD
- Mitochondrial-associated genes and PD (PINK1, DJ1, POLG, cybrids)

Rotenone Exposure and PD


- Residential use more common than commercial use.
- A few case-control studies support increase incidence but not conclusive.
 - Dhillon et al 2008: OR 10.9 (2.5-48)
 - Agriculture Health Study: OR 1.7 (few cases)
 - Anecdotal reports

Mechanisms of Rotenone Toxicity

- Complex I inhibition leads to oxidative stress and energy failure at low concentrations
- Proteasome inhibition
- Microtubule inhibition

Chronic systemic pesticide exposure reproduces features of Parkinson's disease

Ranjita Betarbet, Todd B. Sherer, Gillian MacKenzie, Monica Garcia-Osuna, Alexander V. Panov and J. Timothy Greenamyre

Progression of Parkinson's Disease Pathology Is Reproduced by Intragastric Administration of Rotenone in Mice

Francisco Pan-Montojo et al. PLOS One 2010

Proteasome Dysfunction

- Proteasome-associated genes and PD (Parkin, UCH L1)
- Decreased activity in brains and blood in PD
- Alpha-synuclein is at least partially degraded by the proteasome.

Pesticides that Lead to UPS Inhibition

Rotenone

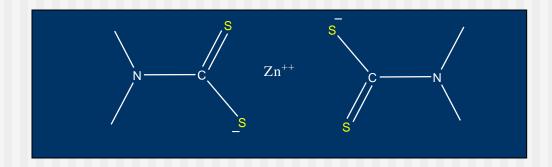
Complex I inhibitor

Ziram and other dithiocarbamates

Fungicide

Multivalent interactions

Benomyl


Fungicide (Benzimidazole) Binds to tubulin

Dieldrin and Endosulfan

Organochlorines (epoxicide) Inhibits GABA-gated chloride channels

Ziram and Related Compounds

- Dimethyl- and diethyldithiocarbamates
- Widely used fungicides on fruits and nuts.
- Approximately 15 million lbs were used in the US in 2002.

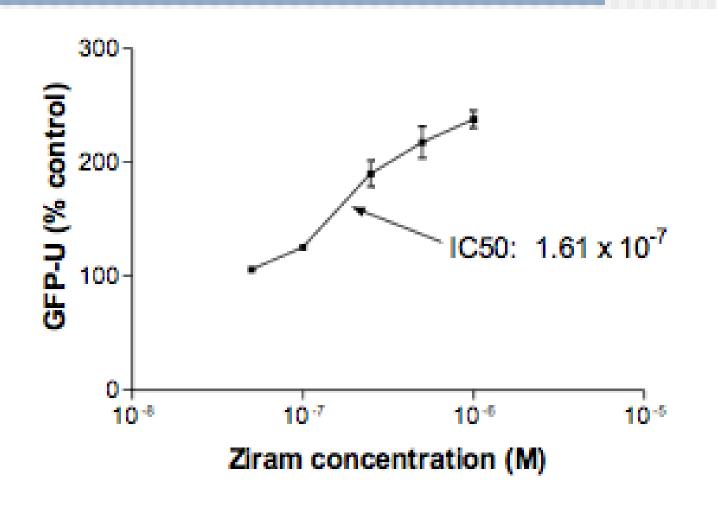
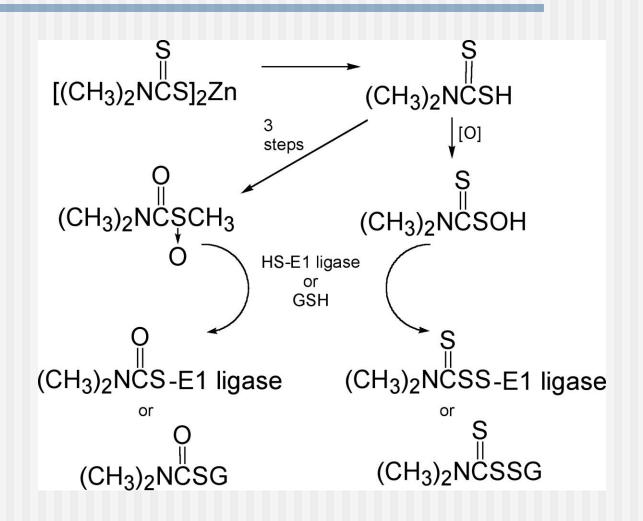
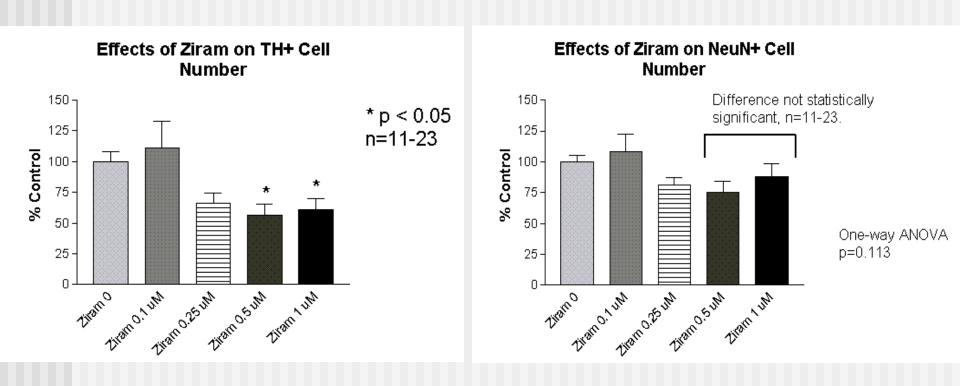
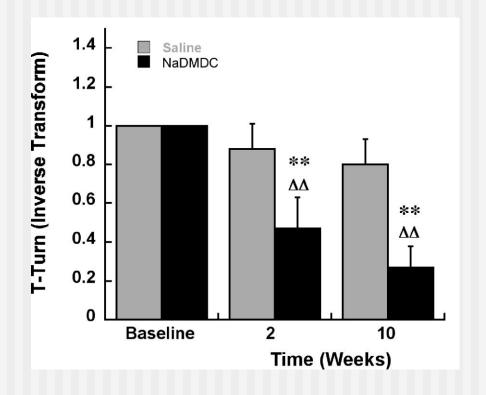

Ziram Exposure and PD (PEG Study)

Table 3. Ambient Occupational and Residential Maneb, Ziram, and Paraquat Exposure by Time Window of Exposure and Age of C entral Valley of California Study Population

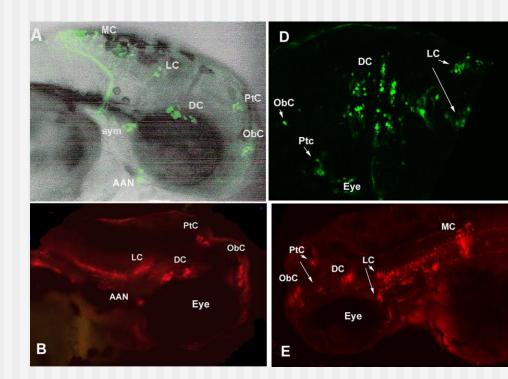

	Occupat iona I**				Resident ial ***			
	Case	Contro I	OR*	95% CI	Case	Contro I	OR*	95% CI
Ziram a nd para quat exposure								
<u> 1974 - 1999 Time Window</u>								
60 years old or younger								
No e xposure to ziram or paraquat	28	53	1.00	ref	21	38	1.00	ref
Z iram or paraquat e xp on ly	30	29	1.90	(0.92,3 .94)	35	37	1.66	(0.80,3.47)
Z iram and pa raquat e xp	19	5	5.97	(1.94, 18.33)	21	12	2.76	(1.09,7 .00)
Over 60 years old								
No e xposure to ziram or paraquat	137	141	1.00	ref	103	99	1.00	ref
Z iram or paraquat e xp on ly	84	76	1.17	(0.78,1.76)	113	112	0.88	(0.59,1.31)
Z iram and pa raquat e xp	64	37	1.93	(1.18,3 .15)	69	43	1.41	(0.86,2 .29)

Wang A, Costello S, Cockburn M, Zhang X, Bronstein , Ritz B

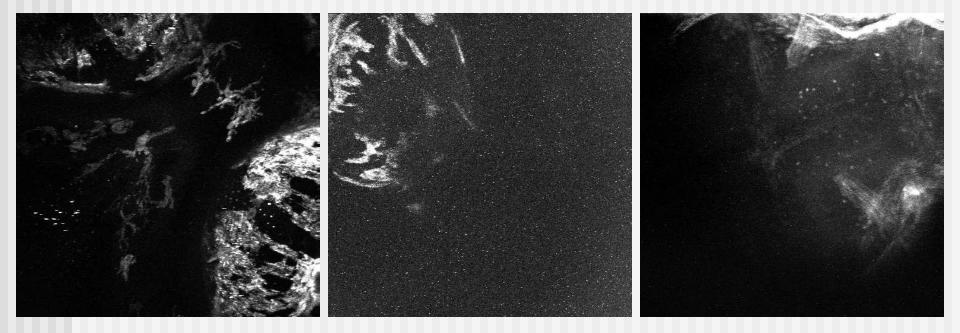

Ziram Inhibits the 26S UPS


Ziram Inhibits E1 Ligase

Ziram and Primary Mesencephalic Cultures


Systemic Administration of DMTC

Chou et al, 2009


A Zebrafish Model to Study Gene-Environment Interactions in PD

- Vertebrates with short life span
- Easy to insert genes
- Transparent to image gene expression
- Behavior easily measured
- Well developed DA system

Transgenic TH-GFP Zebrafish

Ziram (1-10 nM) Alters DA Neuron Development

Control

MPTP

Ziram (20 nM)

Other Pesticides

Paraquat

- Associated with increased risk of PD (in combination with maneb and ziram)
- Mechanism: Redox-cycling?
- Animal model; DA cell loss and behavior
- Benomyl
 - Associated with increased risk of PD (PEG and Ag Health)
 - Mechanisms: UPS-I, ALDH-I, and MT-I
 - Primary culture DA loss but no animal models

How can we prove that a toxin contributes to the pathogenesis of PD?

- A plausible mechanism of action. YES
- Association between a toxin and PD in epidemiological studies. YES
- Recapitulation of behavioral and pathological features in cellular and animal models. YES

Acknowledgments

<u>UCLA</u>

- Sheldon Wang PhD
- Artie Chou (MSTP Student)
- Sharin Li PhD
- Aswani Kumar Kotagiri PhD
- Arthur Fitzmaurice (PhD student)
- Shubhangi Prabhudesai PhD
- Nigel Maidment PhD
- Kelvin Chiu
- Chris Evans PhD
- MF Chesselet MD, PhD

Beate Ritz MD, PhD

- Yvette Bordelon
- AD Wahner
- S Costello

UC Berkeley

- John Casida PhD
- Rebecka Klintenberg PhD

Funding

- NIEHS (CCPDER and PEG)
- Veterans Administration

(SW PADRECC)