Drug-induced parkinsonism A canary in the coal mine?

JAMES F. MORLEY, MD, PHD

ASSOCIATE DIRECTOR FOR RESEARCH, PVAMC PADRECC

ASSISTANT PROFESSOR OF NEUROLOGY, UNIVERSITY OF PENNSYLVANIA SCHOOL OF MEDICINE

Learning objectives

At the conclusion of this educational program, learners will be able to:

- 1) Discuss common risk factors, causative agents and clinical presentations in DIP
- 2) Discuss treatment and clinical outcomes in DIP
- 3) Discuss the potential relationship of DIP to PD

Drug-induced parkinsonism

- De-novo onset
- One or more of the cardinal features of tremor, rigidity or bradykinesia
- Temporal relationship to the institution or change of a pharmacologic therapy

Culprit drugs and mechanisms in DIP

Agents associated with DIP

• French pharmacovigilance center reporting 1993-2009

Class	Agents	% of reports
Central dopaminergic antagonists	haloperidol, fluphenazine, chlorpromazine, risperidone, olanzapine	49
Miscellaneous	valproic acid, lithium, amiodarone	28
Anti-depressants	citalopram, paroxetine, venlafaxine	8
Calcium channel blockers	flunarizine, cinnarizine, verapamil, diltiazem	5
Peripheral dopaminergic antagonists	metoclopramide, domperidone	5
H1 anti-histamines	hydroxyzine, alimemazine	5

Dopamine antagonism is a common theme

Bondon-Guitton Mov Disorders 2011

Spectrum of AP AEs mediated by diverse receptors

TABLE RECEPTOR BLOCKADE AND ANTIPSYCHOTIC SIDE EFFECTS²

<u>Receptor Type</u>	<u>Side Effects</u>
D ₂	EPS, prolactin elevation
M_1	Cognitive deficits, dry mouth, constipation, increased heart rate, urinary retention, blurred vision
H_1	Sedation, weight gain, dizziness
α_1	Hypotension
5-HT _{2A}	Anti-EPS (?)
5-HT _{2C}	Satiety blockade

D=dopamine; EPS=extrapyramidal symptoms; M=muscarine; H=histamine; 5-HT=serotonin.

Robinson DS. Prim Psychiatry. 2007

Receptor pharmacology of AP drugs						
Drug	D2	5HT2A	α1	H1	M1	
First generation or "typical" APs						
haloperidol	1.5	53	12	>1000	>>1000	
perphenazine	0.75	5.6	10	8	>1000	
Second generation or "atypical" APs						
aripiprazole	0.5	3.4	47	61	>1000	
risperidone	4	0.5	0.7	20	>1000	
ziprasidone	5	0.4	11	50	>1000	
olanzapine	11	4	19	7	1.9	
clozapine	126	16	7	6	1	
quetiapine	770	31	8	19	>1000	
Values are Ki (nM)—Low values represent high affinity						

DIP is related to D2 occupancy

- D2 R occupancy drives DIP
- Occupancy threshold ~ extent of nigral loss at PD motor onset
- Drugs with different potencies cause DIP at similar D2 occupancy

Farde et al. Arch Gen Psych 1992

Culprit drugs and mechanisms in DIP

Many drugs implicated but APs most common Dopamine antagonism is a common thread Modulation by 5HT and other pathways

Epidemiology and determinants of DIP

Epidemiology of DIP

- Ayd (1961) described EPS in >3000 AP-treated pts
- Parkinsonism in ~15%
- Estimates vary from study to study (~10-60%)
- 10-20% estimated in common practice
- Associated with non-compliance, falls, decreased QOL (Schouten et al *JAMDA* 2012)

Ayd JAMA 1961

• Intensity (dose, duration) also well-described

Simpson GM, Lindenmayer JP. *J Clin Psychopharmacol*. 1997;17(3):194-201. Tollefson GD, et al. *Am J Psychiatry*. 1997;154(4):457-465. Arvanitis LA, Miller BG. *Biol Psychiatry*. 1997;42(4):233-246. Hirsch SR, et al. *J Clin Psychiatry*. 2002;63(6):516-523. Marder et al 2003.

DIP with SGAs in a large randomized trial

CATIE trial: >1800 pts in RCT of different APs for schizophrenia

**Secondary analysis with more inclusive criteria (Miller *BMJ* 2008) increased incidence to 20-30% but no difference between drugs

Lieberman JA, et al. N Engl J Med. 2005

DIP is a common cause of Parkinsonism

2nd most common after PD
 Expanding problem

 -AP Rx's increasing
 -~60% off-label in VA
 (Leslie 2009)
 --Common (and challenging!)
 differential

Barbosa et al. Mov Disord 2006

DIP is likely underdiagnosed

• 48 psychiatric inpatients

• Compared clinical diagnoses of DIP and other EPS to clinical diagnoses

		Cli	nical Diagnosis	McNemar Test of Difference Between Clinician and Researcher Errors		
Extrapyramidal Syndrome	Patients Given Research Diagnosis	Patients Given Diagnosis	Percent of Patients Given Research Diagnosis	$\begin{pmatrix} \chi^2 \\ (df=1) \end{pmatrix} p$		
Dystonia	3	1	33			
Parkinsonism	29	17	59	10.08 <.005		
Akinesia	23	14	61	7.11 <.01		
Akathisia	27	7	26	18.05 <.001		
Tardive						
dyskinesia ^a	10	1	10	7.11 <.01		

TABLE 1. Research and Clinical Diagnoses of Neuroleptic-Induced Extrapyramidal Syndromes in 48 Psychotic Patients

- Only 59% of DIP clinically diagnosed
- Similar results in a study of inpatient neuro consults (Friedman et al. *J Gerontol* 2003) where only 45% identified correctly

Epidemiology and determinants of DIP

DIP is common and disabling Seen with both FGAs and SGAs RFs include age, gender Variability suggests unmeasured individual susceptibility Magnitude of the problem is under-recognized Likely to increase

Clinical Characteristics of DIP

DIP is commonly but not always observed soon after a drug is started

Clinical characteristics of DIP

Giladi group (Israel). 75 pts (72% male). Mean age 43. Most chronically (>10y) treated

Table 1. The motor performance as score of the UF	4 symmetry			
Subscales ⁸	Maximum obtainable score	Mean ± SD	Range	3
Total motor score Global tremor score Global bradykinesia score Global rigidity score Upper body score	108 24 36 20 12	$22.6 \pm 14.3 \\ 3.0 \pm 4.3 \\ 9.8 \pm 6.1 \\ 5.6 \pm 4.1 \\ 2.7 \pm 1.9$	3, 72 0, 18 1, 28 1, 18 0, 9	RS 2
Lower body score Gait score Postural impairment gait difficulty Right score Left score	12 8 20 32 32	$\begin{array}{c} 2.1 \pm 1.8 \\ 1.0 \pm 1.4 \\ 1.9 \pm 2.8 \\ 7.0 \pm 4.7 \\ 6.9 \pm 5.1 \end{array}$	0, 8 0, 8 0, 20 1, 23 0, 25	0 1 2 LS 3 4

Relatively little tremor, ?UE>LE, symmetric signs otherwise not different than PD

Hassin-Baer J. Neural Trans. 2001

Asymmetry of findings in DIP

- Sethi and Zamrini J Neuropsych and Clin Neuro 1990
- 20 pts: 5 women, mean age 59
- Metoclopramide in 5 pts (tx 3-9mos), APs in 15 (3-25 years)
- Predominant signs:
 - Tremor in 7
 - Bradykinesia in 5
 - Mixed for 8
- Significant asymmetry in 6 (30%)
- Hardie and Lees (*JNNP* 1998) described asymmetry in 14/26 schizophrenic patients with DIP (54%)

Treatment of DIP

- Does it need to be treated?
- Remove, reduce or replace
- Little systematic study
 - One crossover placebo controlled trial (40 pts, 2wk treatment) amantadine=trihexyphenidyl>placebo
 Empiric use of anti-cholinergics but AEs often limiting
- Variable response to levodopa
 - May be safer than advertised
- Several reports of ECT in severe cases

Response to levodopa in DIP

	Webster score		Duration (m	Duration (months) of levodopa				
Patient	Pre/post	Response	Delay	Treatment	Follow up	Dose mg		
Drug withdrawn								
CR	12/10	none	0	29	30	1000*		
KS	15/16	none	0	3	3	600		
AK	10/6	slight	1	7	15	300*		
AN	22/17	slight	4	30	30	600		
ES	26/18	slight	3	9	10	600		
AD	11/4	moderate	Ō	2	30	1000*		
JK	14/8	moderate	ŏ	21	21	300		
AS	11/3	moderate	2	39	39	150		
JS	23/0	complete	1	24	24	300		
PW	13/2	complete†	i	6	23	300		
Drug continued								
NW	10/11	none		12	28	800*		
MC	15/15	none	_	6	12	800*		
KG	20/15	slight		47	53	1000*		
GT	23/14	moderate	_	33	33	800		
ON	18/6	moderate		26	26	300		

LD response	Drug withdrawn	Drug continued	Overall
None	20%	40%	27%
Slight	30%	20%	27%
Moderate	20%	40%	33%
Complete	20%	0%	13%

Discontinuation for "agitated anxiety" in 1 pt, dyskinesia in 2

Hardie and Lees JNNP 1998

DA agonist for DIP??

ORIGINAL ARTICLE

Low Doses of Rotigotine in Patients With Antipsychotic-Induced Parkinsonism

Roberto Di Fabio, MD,* Sergio De Filippis, MD,† Carmine Cafariello, MD,‡ Laura Penna, MD,† Massimo Marianetti, MD,§ Mariano Serrao, MD,* and Francesco Pierelli, MD#

20 chronic psychotic pts; rotigotine (patch) titration to "effect" or 8mg/24hr (mean=3.2)

		baseline	titration	1m post-titration
	UPDRS	33.5±9.5	21.3±9.8*	21.4±9.7†
Malan	UPDRS III	15.5±4.9	8.5±5.0*	8.5±5.1†
Motor	SAS	14.5 ± 6.8	9.0±6.9*	8.9±7.1†
	BARS	1.3 ± 1.4	$0.8 \pm 0.8 \ddagger$	$0.8 \pm 0.8 \ddagger$
	MBI	91.5±9.2	91.5 ± 8.5 §	91.7 ± 8.4 §
Psychiatric	HDRS	23.2±4.1	23.2±4.1§	23.2 ± 3.9 §
	PANSS	80.9 ± 18.7	78.4±17.7§	78.1 ± 18.1 §

DiFabio Clin Neuropharm 2013

Outcomes in DIP

• Typical thinking is withdraw and wait

- Stephen and Williamson *(Lancet* 1984):66% of 48 pts with complete resolution at 36 weeks (mean 7 weeks) but 11% with persistent sx at 18 months
- 10/16 (62%) pts from Hardie and Lees had residual sx at 3-4 months that required levodopa
- Lim et al. (*Int J Neurosci* 2013): 2 cases of persistent symptoms >6 months with normal dopamine transporter imaging—eventually resolved after 9-12 months
- Hong et. Al. (PLoS One 2016): 9 cases of "partial" recovery after 12 mos with normal FP-CIT PET

Clinical Characteristics of DIP

Timing of DIP is complicated

Standard teaching (symmetry, tremor) may be misleading

Little evidence to guide for management (though dopaminergics may help in a subset)

Outcomes may depend on how long you "watch and wait"

Does DIP reveal underlying neurodegeneration ?

Evidence for "unmasking" of PD in DIP

- ~10-20% with persistence or worsening after withdrawal
- Multiple studies describe pts who resolve but develop recurrent, progressive sx
- Patients with prior DIP are at ~20X higher risk for future PD (Chabolla *Mayo Clin Proc* 1998)

Underlying Lewy pathology in "DIP"

Reversible Drug-Induced Parkinsonism

Clinicopathologic Study of Two Cases

Ali H. Rajput, MD, FRCP(C); Bohdan Rozdilsky, MD, FRCP(S); Oleh Hornykiewicz, MD; Kathleen Shannak, BSc; Tyrone Lee, PhD; Phillip Seeman, MD, PhD

--2 pts with reversible DIP but nigral Lewy bodies at autopsy

RESEARCH ARTICLE

Neuroleptic-Induced Parkinsonism: Clinicopathological Study

Umar A. Shuaib, MBBS,¹ Ali H. Rajput, MBBS, FRCPC,² Christopher A. Robinson, MD, FRCPC,³ and Alex Rajput, MD, FRCPC²

--7 cases of DIP

--2 with reversible DIP \rightarrow Lewy pathology at autopsy --5 continuously treated with AP \rightarrow 4 normal brains, 1 with nigral neuronal loss (no LP)

Rajput Arch Neurol 1982; Shuaib Mov Dis 2015

Are "prodromal" features more common in "unmasked" PD?

Braak, Neurobiol Aging, 2003

Halliday, Mov Disord, 2011

Morley Park Rel Dis 2014

A cohort to compare DIP with PD

	PD vs. DIP			Persistent DIP vs. reversible DIP		
	PD	DIP	Р	pDIP	rDIP	р
	N=97	N=97		N=15	N=22	
Age	65 (6.8)	64 (10)	0.58	69 (11)	63 (10)	0.10
Gender	99	95	0.11	100	93	0.41
(% male)						
Smokers (%)	17	21	0.63	27	19	0.66
UPDRS-I	3.5 (2.9)	5.6 (3.7)	0.002	2.8 (2.5)	4.3 (4.3)	0.44
UPDRS-II	13 (8.9)	13 (8.5)	0.81	11 (10)	7.4 (6.3)	0.25
Schwab &	76 (20)	70 (25)	0.13	70 (23)	80 (21)	0.27
England						

Motor features in PD and DIP

	PD vs. DIP			Persistent DIP vs. reversible DIP		
	PD	DIP	Р	pDIP	rDIP	р
	N=97	N=97		N=15	N=22	
UPDRS-III	24 (12)	26 (15)	0.65	27 (16)	27 (16)	0.89
Tremor	3.4 (3.5)	4.4 (4.1)	0.08	4.3 (3.8)	5.9 (4.4)	0.35
Bradykinesia	10 (5.9)	9.1 (8.8)	0.32	11.3 (8.8)	7.7 (7.3)	0.16
Rigidity	5.4 (3.3)	4.9 (4.1)	0.23	5.1 (4.7)	5.9 (4.6)	0.64
PIGD	3.7 (2.3)	1.7 (1.6)	<0.001	2.2 (1.1)	0.94 (1.1)	0.003
Asymmetry	0.29 (0.28)	0.11 (0.11)	<0.001	0.11 (0.10)	0.11 (0.15)	0.96
index						

Non-motor symptoms in PD and DIP

	PD vs. DIP			Persistent DIP vs. reversible DIP		
	PD	DIP	Р	pDIP	rDIP	р
	N=97	N=97		N=15	N=22	
Constipation	49%	30%	0.02	42%	20%	0.21
Lightheaded	42%	41%	1.0	50%	33%	0.34
Urinary	57%	42%	0.06	58%	40%	0.29
Impotence	47%	30%	0.05	42%	20%	0.21
Multiple	67%	50%	0.07	50%	21%	0.15
autonomic						
Mood	47%	61%	0.11	58%	56%	0.61
Dream	51%	39%	0.15	55%	15%	0.06
enactment						
Abnormal	88%	28%	0.04	86%	16%	0.03
olfactory	(16/18)	(12/21)		(6/7)	(1/6)	
testing						

Many DIP patients have dopaminergic denervation

Study	Ν	Population	Method	Abnormal
Burn <i>Neurology</i> 1993	13	schizophrenia	F-dopa PET	4 (30%)
Lorberboym <i>Mov Dis</i> 2006	20	mixed	DaT-SPECT	11 (55%)
Tinazzi <i>Mov Dis</i> 2008	32	mixed	DaT-SPECT	14 (44%)
Tinazzi <i>Schiz Res</i> 2012	97	schizophrenia	DaT-SPECT	41(42%)
Hambye Nuc Med Com 2010	22	Cardiac (amio)	DaT-SPECT	11(50%)
Total	184			81 (44%)

Clinical correlates of underlying DAT-deficit in DIP

(())				
	DAT-SPECT normal	DAT-SPECT abnormal		
	N=26	N=7	р	
Age (years)	62 (8)	68(8)	0.10	
Gender (%male)	89	86	1.0	
Psychiatric				
Psychosis (%)	38	57	0.43	
Dose(CPZ equivalents)	2.5 (1.5)	1.0 (0.66)	0.004	
DAT Interfering drug (%)	50	43	0.740	
Motor				
UPDRS-3 score	19 (10)	15 (5.0)	0.44	
bradykinesia	7.2 (6.1)	5.8 (5.5)	0.55	
tremor	4.7 (3.9)	1.8 (1.8)	0.09	
rigidity	3.4 (3.2)	4.5 (3.3)	0.45	
PIGD	0.92 (0.69)	1.7 (1.9)	0.10	
asymmetry index	0.30 (0.33)	0.25 (0.25)	0.73	
Non-motor				
Non-motor Symp Scale	6.1(6.6)	16(6.1)	0.01	
Olfactory percentile	44 (22)	13 (25)	0.005	
Anosmia (%), (N)	9 (2/23)	86 (6/7)	<0.001	
odds ratio-62 050	% CI = 4 - 8 - 8 - 9 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0			

Morley et al, submitted

Association between olfaction and regional denervation

Regional striatal uptake by clinical category

Quantification by Jake Dubroff

Morley, et al, unpublished

Association between olfaction and regional denervation

Partial correlations of regional SBRs and olfactory score

	R (age, sex)	р
Caudate	0.64	0.01
Anterior Putamen	0.64	0.008
Posterior Putamen	0.69	0.003
Lower Posterior Putamen	0.79	<0.001

Does DIP reveal underlying neurodegeneration ?

-SUBSTANTIAL FRACTION OF CLINICAL "DIP" HAVE UNDERLYING DAT ABNORMALITY

-DAT ABNORMALITIES IN DIP SIMILAR TO PATTERNS OBSERVED IN EARLY PD

-SMELL TESTING MAY BE A SIMPLE YET EFFECTIVE SCREEN FOR UNDERLYING PD IN DIP

Conclusions

- DIP is common and debilitating
- DIP occurs with both typical and atypical antipsychotics
- DIP can be impossible to distinguish from iPD
- Systematic study of management and outcomes is needed
- DIP may define an at-risk/incipient PD cohort
- Non-motor symptoms including olfaction and dopamine transporter imaging may be useful clinical and radiologic biomarkers

Acknowledgements

- Drs. John Duda, Jayne Wilkinson, PADRECC, PDMDC colleagues
- Gang Cheng, Jake Dubroff (Nuc Med)
- Stephanie Pawlowski
- VA (VISN 4 CPPF and Rehab R&D service) and GE Healthcare for funding

